Abstract
Breast cancer is known to be a fatal disease since decades in women worldwide. Mammography is an effective tool used for the detection of breast cancer in the early stage. Computer aided tools helps medical field by ruling out the false identification of cancer cells in mammograms. Breast region extraction and classification of the extracted region into normal and abnormal is a crucial step in mammographic based diagnosis of breast cancer. Hence, in the proposed paper a method for segmentation of breast region and classification of breast region is presented. Breast region extraction is performed using Otsu’s thresholding method and intensity adjustments, enhancement is performed by Contrast Limited Adaptive Histogram Equalization (CLAHE). Gray Level Co-Occurrence Matrix (GLCM), Histogram of Oriented Gradients (HOG), Local Binary Pattern (LBP) features are extracted to classify the breast region using K-Nearest Neighbors (KNN) classifier. The proposed algorithm is tested on Mammographic Image Analysis Society (MIAS) dataset, obtained minimum Root Mean Square Error (RMSE) and maximum Peak Signal-to-Noise Ratio (PSNR). For classification, 80.12% of accuracy is obtained with TPR and FPR of about 0.8317 and 0.3412 respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.