Abstract
This paper addresses the problem of the signal segmentation within a hierarchical Bayesian framework by using reversible jump MCMC sampling. The signal is modelled by piecewise constant MA processes where the numbers of segments, the position of abrupt, the order and the coefficients of the MA processes for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow to compute some interesting features of the a posterior distribution. Main advantage of the algorithm reversible jump MCMC algorithm is produce the joint estimators for the parameter and hyper parameter in hierarchical Bayesian. The performance of the this methodology is illustrated via several simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.