Abstract

ABSTRACTTemperature‐modulated differential scanning calorimetry (TMDSC) and broadband dielectric spectroscopy (BDS) were employed to study the glass transition, size of the cooperative rearranging regions (CRRs), crystallization kinetics, and dielectric relaxation response of nanocomposites constituted by chain‐extended poly(L‐lactide) (PLLA) and carboxylated carbon nanotubes (f‐CNTs). The CRR size and the number of relaxing structural units decreased in the presence of crystals during isothermal crystallization. All samples displayed both a primary (α) and secondary (β) relaxation in BDS spectra. The relaxation dynamics of PLLA chains was barely affected by the presence of the f‐CNT. Constrained polymer chains and thickness of interphase (t i) were measured using dielectric spectra in tan δ representation. t i values were found to be 46 and 24 nm for sample containing 0.2 and 0.5% weight fraction of f‐CNT, respectively. All samples underwent partial crystallization (with roughly 30% of final crystalline fraction) some 15 or 20° above their glass‐transition temperature (T g). Crystallization leads to a fragile‐to‐strong transition in the temperature dependence of the cooperative α relaxation and to the increased visibility of a Maxwell–Wagner–Sillars (MWS) interfacial relaxation, which appears to be present in all samples. The heterogeneity of the polymeric samples was quantified in terms of a new parameter, the heterogeneity index (H). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 222–233

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.