Abstract

Six-Port microwave interferometers are a low-cost as well as low-power type of radar sensor with a high phase accuracy, which can be used for precise displacement measurements. Near field effects strongly influence the signal characteristics of a reflection of the electromagnetic wave near the antenna, especially if the target is low reflective. In this paper a calibration procedure based on phase error correction by segmental polynomial approximation is proposed that utilizes these effects. After validating the functionality of the calibration algorithm and its improvement by comparison to a comparable state-of-the-art procedure, two further near field measurements are presented. A cardboard as well as a plastic plate are used as low reflecting targets to show the applicability of the proposed calibration procedure for diverse measurement scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.