Abstract

In this study, spatial orientational distribution functions of labeled chain segments of cross-linked and linear PMMA were obtained by solid-state NMR as a function of finite deformation (far) below and (far) above the glass transition temperature T g . The applied data analysis allows comparison of theoretical predictions and experimental data, both in terms of the orientational probability distributions as a function of two polar angles, as well as in terms of moments of the distribution. Orientation–strain relationships of chain segments agreed above and below T g with predictions from the rubber-elastic affine network model, but suggests a much denser network below T g than given by the cross-link density or the entanglement density in the melt. This suggested network structure is believed to be the generator of segmental orientation during plastic deformation in the glassy state, independent of the range of applied cross-link densities and deformation rates used in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.