Abstract
Avian neural crest cells migrate on precise pathways to their target areas where they form a wide variety of cellular derivatives, including neurons, glia, pigment cells and skeletal components. In one portion of their pathway, trunk neural crest cells navigate in the somitic mesoderm in a segmental fashion, invading the rostral, while avoiding the caudal, half-sclerotome. This pattern of cell migration, imposed by the somitic mesoderm, contributes to the metameric organization of the peripheral nervous system, including the sensory and sympathetic ganglia. At hindbrain levels, neural crest cells also travel from the neural tube in a segmental manner via three migratory streams of cells that lie adjacent to even-numbered rhombomeres. In this case, the adjacent mesoderm does not possess an obvious segmental organization, compared to the somitic mesoderm at trunk levels. Thus, the mechanisms by which the embryo controls segmentally-organized cell migrations have been a fascinating topic over the past several years. Here, I discuss findings from classical and recent studies that have delineated several of the tissue, cellular and molecular elements that contribute to the segmental organization of neural crest migration, primarily in the avian embryo. One common theme is that neural crest cells are prohibited from entering particular territories in the embryo due to the expression of inhibitory factors. However, permissive, migration-promoting factors may also play a key role in coordinating neural crest migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.