Abstract

A residue essential for proper closure of the active-site loop in the reaction catalyzed by triosephosphate isomerase is tyrosine-208, the hydroxyl group of which forms a hydrogen bond with the amide nitrogen of alanine-176, a component of the loop. Both residues are conserved, and mutagenesis of the tyrosine to phenylalanine results in a 2000-fold drop in the catalytic activity (kcat/Km) of the enzyme compared to the wild-type isomerase. The nature of the closure process has been elucidated from both viscosity dependence and primary isotope effects. The reaction catalyzed by the mutant enzyme shows a viscosity dependence using glycerol as the viscosogen. This dependence can be attributed to the rate-limiting motion of the active-site loop between the "open" and the "closed" conformations. Furthermore, a large primary isotope effect is observed with [1-2H]dihydroxyacetone phosphate as substrate [(kcat/Km)H/(kcat/Km)D = 6 +/- 1]. The range of isotopic experiments that were earlier used to delineate the energetics of the wild-type isomerase has provided the free energy profile of the mutant enzyme. Comparison of the energetics of the wild-type and mutant enzymes shows that only the transition states flanking the enediol intermediate have been substantially affected. The results suggest either that loop closure and deprotonation are coupled and occur in the same rate-limiting step or that these two processes happen sequentially but interdependently. This finding is consistent with structural information that indicates that the catalytic base glutamate-165 moves 2 A toward the substrate upon loop closure.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.