Abstract
Steady-state fluorescence spectra and decays of excitations of a phosphorus-containing dendrimer labeled with 12 internal labels and of an iminophosphorane model compound bearing two labels dissolved in acetonitrile, diglyme, 1,4-dioxane, triethylene glycol, and cyclohexanol revealed that the interior of dendrimers contained many solvent molecules, and movements of internally located pyrene labels were not reduced by interactions with the dendrimer core. This conclusion was based on the following findings. A ratio of the intensities of pyrene−pyrene excimer and pyrene monomer emissions (IE/IM) decreased with increasing solvent viscosity but, with exception of acetonitrile solutions, was very close for the dendrimers and for the model. Monomer and excimer emission intensity decays were fitted with two-exponential functions with time constants τ1 and τ2 characterizing formation of pyrene−pyrene excimers and recovery of pyrene moieties in their ground state, respectively. For solvent viscosities varying from...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.