Abstract

The segmental dynamics of polymers is known to be closely related to the glass transition where the glass transition is the single most important parameter in its application. In this study, we designed an efficient and reliable experimental method to study the ensemble segmental dynamics of polymers by probing rotation of fluorescent molecules in the polymer matrix using a home-built microscope setup. The rotational dynamics of fluorescent molecules was analyzed using a fluorescence correlation method that extracts information through orthogonally polarized fluorescence images. From fluorescence intensities, autocorrelation functions (ACFs) were obtained in many areas simultaneously and by averaging several ACFs, well-defined ACF and precise experimental values were obtained from a single measurement movie. The robustness of the method and optimal experimental conditions were investigated by performing experiments with various probe concentrations, frame rates, and measurement lengths. By employing a home-built vacuum chamber, a wide temperature range was achieved, and we demonstrate the versatility and efficiency of imaging rotational FCM (fluorescence correlation microscopy) by probing segmental dynamics of different polymeric systems with glass transition temperature that differ by ≈100 K and with fragility ranging from 49 to 131. The imaging rotational FCM covers dynamics up to 4 orders of magnitude near the glass transition, and it was found that the rapidity of the stretching exponent β variation with temperature correlates with the fragility of polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call