Abstract

The segmental dynamics of a model miscible blend, C24H50 and C6D14, were investigated as a function of temperature and composition. The segmental dynamics of the C24H50 component were measured with C13 nuclear magnetic resonance T1 and nuclear Overhauser effect measurements, while H2 T1 measurements were utilized for the C6D14 component. Use of low molecular weight alkanes provides a monodisperse system in both components and allows differentiation of dynamics near the chain ends. From these measurements, correlation times can be calculated for the C–H and C–D bond reorientation as a function of component, position along the chain backbone, temperature, and composition. At 337 K, the segmental dynamics of both molecules change by a factor of 2 to 4 across the composition range, with the central C–H vectors of tetracosane showing a stronger composition dependence than other C–H or C–D vectors. Molecular simulations in the canonical and isobaric–isothermal ensembles were conducted with a united-atom force field that is known to reproduce the thermodynamic properties of pure alkanes and their mixtures with good accuracy. With a minor change to the torsion parameters, the correlation times for pure tetracosane are in good agreement with experiment. For pure hexane and its mixtures with tetracosane, the simulated dynamics are faster than experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.