Abstract

Predictions for double-step strain flows are presented using a newly proposed reptation theory that accounts for segment connectivity, chain-length breathing, segmental stretch and constraint release in a self-consistent, full-chain theory. In this part of the work emphasis is on double-step shear strains where the second step is reversed and the imposition time of the second strain is earlier than the estimated retraction time, for which the Doi–Edwards model and single-integral models have been found to be incapable of describing experimental trends. Transient stress relaxation properties of two types of reversing flows, types B and C, have been examined and compared to the predictions obtained from the Doi–Edwards model and a single-integral model. The simulations show excellent agreement with the experimental trends based on recent mechanical and optical measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.