Abstract

Buildings bear much of the damage from natural disasters, and determining the extent of this damage is of great importance to post-disaster emergency relief. The application of deep learning to satellite remote sensing imagery has become more and more mature in monitoring natural disasters, but there are problems such as the small pixel scale of targets and overlapping targets that hinder the effectiveness of the model. Based on the SegFormer semantic segmentation model, this study proposes the SegDetector model for difficult detection of small-scale targets and overlapping targets in target detection tasks. By changing the calculation method of the loss function, the detection of overlapping samples is improved and the time-consuming non-maximum-suppression (NMS) algorithm is discarded, and the horizontal and rotational detection of buildings can be easily and conveniently implemented. In order to verify the effectiveness of the SegDetector model, the xBD dataset, which is a dataset for assessing building damage from satellite imagery, was transformed and tested. The experiment results show that the SegDetector model outperforms the state-of-the-art (SOTA) models such as you-only-look-once (YOLOv3, v4, v5) in the xBD dataset with F1: 0.71, Precision: 0.63, and Recall: 0.81. At the same time, the SegDetector model has a small number of parameters and fast detection capability, making it more practical for deployment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call