Abstract

We investigate the phenomenology of a class of model that at the same time solves the tachyonic slepton problem of the pure anomaly mediated supersymmetry breaking (AMSB) model and generates neutrino masses. We introduce heavy fields in the seesaw mechanism that are the messengers in the deflected AMSB scenario. Various theoretical and phenomenological constraints have been taken into account, especially the Higgs mass limits. The viable parameter regions have been specified, and the properties of dark matter candidate have been studied. We point out that the type III seesaw with three generations of 24-messenger is excluded, while the type II seesaw and type III seesaw with two generations of 24-messenger are still allowed. The sparticle masses are heavy as in usual SUSY models. The spin-independent crosssection of the scattering between the lightest neutralino and proton show the possibility to see evidences of new physics from future dark matter search experiments. We find that the lepton flavor violation effects caused by the Yukawa mediation are suppressed due to the electroweak symmetry breaking condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call