Abstract

We describe a model for the scalar sector where all interactions occur either at an ultra-high scale L_U ~ 10^{16}-10^{19} GeV or at an intermediate scale L_I ~ 10^{9}-10^{11} GeV. The interaction of physics on these two scales results in an SU(2) Higgs condensate at the electroweak (EW) scale, L_{EW}, through a seesaw-like Higgs mechanism, L_{EW} ~ L_I^2/L_U, while the breaking of the SM SU(2)XU(1) gauge symmetry occurs at the intermediate scale L_I. The EW scale is, therefore, not fundamental but is naturally generated in terms of ultra-high energy phenomena and so the hierarchy problem is alleviated. We show that the class of such ``seesaw Higgs'' models predict the existence of sub-eV neutrino masses which are generated through a ``two-step'' seesaw mechanism in terms of the same two ultra-high scales: m_nu ~ L_I^4/L_U^3 ~ L_{EW}^2/L_U. The neutrinos can be either Dirac or Majorana, depending on the structure of the scalar potential. We also show that our seesaw Higgs model can be naturally embedded in theories with tiny extra dimensions of size R ~ 1/L_U ~ 10^{-16} fm, where the seesaw induced EW scale arises from a violation of a symmetry at a distant brane; in particular, in the scenario presented there are 7 tiny extra dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.