Abstract

The goal of the present study is to investigate analytically, numerically and experimentally the instability of the displacement of viscous fluid by a less viscous one in two- and three-dimensional channels, and to determine characteristic size of entrapment zones. Experiments on miscible displacement of fluids in Hele–Shaw cells were conducted under microgravity conditions. Extensive direct numerical simulations allowed investigating the sensitivity of the displacement process to variation of values of the main governing parameters. The influence of three-dimensional effects (aspect ratio) on displacement instability was studied. One-dimensional model to simulate mixing flux due to frontal displacement instability was developed for engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call