Abstract

Clarifying the microscale gas–water flow behaviors in a mixed wettability reservoir is of great importance for underground engineering. A numerical model of mixed wettability based on circular particles was constructed using the MATLAB stochastic distribution program, and the gas–water flow was simulated based on the phase-field method. The Navier–Stokes equations were solved by the finite element method. The work analyzed the effects of the content of heterogeneous wetting particles, wettability, and inversed wettability of the matrix on the flow path and pressure distribution of the mixed wettability model. Besides, the two-phase flow behaviors were evaluated in microscale mixed-wettability porous media. The simulation results revealed that (i) the residual saturation of the gas phase showed a positive correlation with the hydrophobic particle content, and closed gases only existed in isolated pore channels with small content. Isolated closed gases gradually connected as the content increased. (ii) The residual gas content in the corner and tail end increased as the hydrophobicity of particles increased in hydrophilic matrices. Hydrophobic matrices showed a negative correlation, with the greatest pressure drop due to capillary resistance and step changes in the neutral-hydrophobic transition zone. (iii) Water-phase breakthrough time and gas-phase residual saturation showed a negative correlation change. The more space occupied by the gas phase, the faster the water-phase breakthrough. Moreover, the saturation no longer changes after the breakthrough. The work provides a guideline for determining the dominant flow path of phase displacements and the distribution of residual phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.