Abstract

Brain connectivity is progressively disrupted in Alzheimer's disease (AD). Here, we used a seemingly unrelated regression (SUR) model to enhance the power to identify structural connections related to cognitive scores. We simultaneously solved regression equations with different predictors and used correlated errors among the equations to boost power for associations with brain networks. Connectivity maps were computed to represent the brain's fiber networks from diffusion-weighted magnetic resonance imaging scans of 200 subjects from the Alzheimer's Disease Neuroimaging Initiative. We first identified a pattern of brain connections related to clinical decline using standard regressions powered by this large sample size. As AD studies with a large number of diffusion tensor imaging scans are rare, it is important to detect effects in smaller samples using simultaneous regression modeling like SUR. Diagnosis of mild cognitive impairment or AD is well known to be associated with ApoE genotype and educational level. In a subsample with no apparent associations using the general linear model, power was boosted with our SUR model—combining genotype, educational level, and clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.