Abstract

We investigate the heat kernel method for one-loop effective action following the Seeley-DeWitt expansion technique of heat kernel with Seeley-DeWitt coefficients. We also review a general approach of computing the Seeley-DeWitt coefficients in terms of background or geometric invariants. We, then consider the Einstein-Maxwell theory em-bedded in minimal mathcal{N} = 2 supergravity in four dimensions and compute the first three Seeley-DeWitt coefficients of the kinetic operator of the bosonic and the fermionic fields in an arbitrary background field configuration. We find the applications of these results in the computation of logarithmic corrections to Bekenstein-Hawking entropy of the extremal Kerr-Newman, Kerr and Reissner-Nordström black holes in minimal mathcal{N} = 2 Einstein-Maxwell supergravity theory following the quantum entropy function formalism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.