Abstract

The world glaciers and areas of persistent summer snowpack are being lost due to warming temperatures. For cold-adapted species, habitat features may offer opportunities for cooling during summer heat yet the loss of snow and ice may compromise derived thermoregulatory benefits. Herein we offer insights about habitat selection for snow and the extent to which other behavioral adjustments reduce thermal debt among high elevation mammals. Specifically, we concentrate on respiration in mountain goats (Oreamnos americanus), a species whose native distribution is currently tied to northern mountain ranges of North America, where large patches of persistent summer snow are declining, and which became extinct during geologically warmer epochs. To examine sensitivity to possible thermal stressors and use of summer snow cover, we tracked marked and unmarked mountain goats in Glacier National Park, Montana, USA, to test hypotheses about selection for cold microclimates including shade and snow during periods of relatively high temperature. To understand functional responses of habitat choices, we measured microhabitat temperatures and a component of goat physiology–breaths per minute–as an index for metabolic expenditure. Individuals 1) selected areas closer to snow on warmer summer days, and 2) on snow had a 15% mean reduction in respiration when accounting for other factors, which suggests remnant snow plays an important role in mediating effects of air temperature. The use of shade was not as an important variable in models explaining respiration. Despite the loss of 85% of glaciers in in Glacier National Park, summer’s remnant snow patches are an important reservoir by which animals reduce heat stress and potential hyperthermia. Our findings, when contextualized with behavioral strategies deployed by other high elevation mammalian taxa help frame how ambient temperatures may be modulated, and they offer a direct way by which to assess susceptibility to increasing heat in cold-adapted species.

Highlights

  • Global climate change is altering ecological systems through long-term changes in weather patterns, temperature, precipitation, and glacial loss [1]

  • We present results as an odds ratio —which is derived by exponentiating the beta coefficient–because the interpretation is more biologically understandable

  • We developed three predictions that stem from the more general hypothesis that snow patch use benefits mountain goats through a more favorable thermal environment

Read more

Summary

Introduction

Global climate change is altering ecological systems through long-term changes in weather patterns, temperature, precipitation, and glacial loss [1]. Warming temperatures are reducing these hydrologic features [3], and simultaneously altering microclimates [2] which cold-adapted species maintain thermal reliance [4]. These hydrologic and geomorphic alternations will subsequently affect ecological interactions and species distributions, often mechanistically by physiological impacts on individuals. Cold-adapted species of boreal, montane, or tundra-restricted distributions face different challenges and are likely to be impacted by decreasing snowpack, a symptom of increasing global temperature (Table 1)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call