Abstract

Synthesis of a stable, well ordered honeycomb borophene (hB) phase has been achieved to date by exploiting Al(111) as a growth substrate, which provides the necessary charge doping to compensate the high hexagonal-holes density. However, B/Al(111) is governed by a strong B–Al interaction so to yield the actual formation of an AlB2 hB phase. Dilution of aluminum by alloying could then in principle weaken the boron-support bonding. By means of a combined spectroscopy and microscopy experimental approach, we find instead that the growth of boron layers on the Ni3Al(111) alloy termination is driven by B dissolution into the bulk and surface segregation mechanisms. While no long-range ordered boron-induced phase is observed, locally ordered superstructural units with triangular appearance are stabilized by substrate pinning, following the chemical p(2 × 2) surface order. Oxidation involves both boron and aluminum, inducing surface segregation of B, while nickel remains in its metallic form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call