Abstract

Research questionWhat can three-dimensional cell contact networks tell us about the developmental potential of cleavage-stage human embryos? DesignThis pilot study was a retrospective analysis of two Embryoscope imaging datasets from two clinics. An artificial intelligence system was used to reconstruct the three-dimensional structure of embryos from 11-plane focal stacks. Networks of cell contacts were extracted from the resulting embryo three-dimensional models and each embryo's mean contacts per cell was computed. Unpaired t-tests and receiver operating characteristic curve analysis were used to statistically analyse mean cell contact outcomes. Cell contact networks from different embryos were compared with identical embryos with similar cell arrangements. ResultsAt t4, a higher mean number of contacts per cell was associated with greater rates of blastulation and blastocyst quality. No associations were found with biochemical pregnancy, live birth, miscarriage or ploidy. At t8, a higher mean number of contacts was associated with increased blastocyst quality, biochemical pregnancy and live birth. No associations were found with miscarriage or aneuploidy. Mean contacts at t4 weakly correlated with those at t8. Four-cell embryos fell into nine distinct cell arrangements; the five most common accounted for 97% of embryos. Eight-cell embryos, however, displayed a greater degree of variation with 59 distinct cell arrangements. ConclusionsEvidence is provided for the clinical relevance of cleavage-stage cell arrangement in the human preimplantation embryo beyond the four-cell stage, which may improve selection techniques for day-3 transfers. This pilot study provides a strong case for further investigation into spatial biomarkers and three-dimensional morphokinetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.