Abstract

Episodic future thinking (EFT) refers to the critical ability that enables people to construct and pre-experience the vivid mental imagery about future events, which impacts on the decision-making for individuals and group. Although EFT is generally believed to have a visual nature by theorists, little neuroscience evidence has been provided to verify this assumption. Here, by employing the approach of connectome-based predictive modeling (CPM) and graph-theoretical analysis, we analyzed resting-state functional brain image from 191 participants to predict their variability of EFT ability (leave-one-out cross-validation), and validated the results by applying different parcellation schemas and feature selection thresholds. At the connectome strength level, CPM-based analysis revealed that EFT ability could be predicted by the connectome strength of visual network. Besides, at the network level, graph-theoretical analysis showed that EFT ability could be predicted by the network efficiency of visual network. Moreover, these findings were replicated using different parcellation schemas and feature selection thresholds. These results robustly and collectively supported that the visual network might be one of the neural substrates underlying EFT ability from a comprehensive perspective of resting-state functional connectivity strength and the neural network. This study provides indications on how the function of visual network supports EFT ability, and enhances our understanding of the EFT ability from a neural basis perspective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call