Abstract

Polymorphic phenotypes of mammalian coat coloration have been important to the study of genetics and evolution, but less is known about the inheritance and fitness consequences of individual variation in complex coat pattern traits such as spots and stripes. Giraffe coat markings are highly complex and variable and it has been hypothesized that variation in coat patterns most likely affects fitness by camouflaging neonates against visually hunting predators. We quantified complex coat pattern traits of wild Masai giraffes using image analysis software, determined the similarity of spot pattern traits between mother and offspring, and assessed whether variation in spot pattern traits was related to fitness as measured by juvenile survival. The methods we described could comprise a framework for objective quantification of complex mammal coat pattern traits based on photographic coat pattern data. We demonstrated that some characteristics of giraffe coat spot shape were likely to be heritable, as measured by mother-offspring regression. We found significant variation in juvenile survival among phenotypic groups of neonates defined by multivariate clustering based on spot trait measurement variables. We also found significant variation in neonatal survival associated with spot size and shape covariates. Larger spots (smaller number of spots) and irregularly shaped or rounder spots (smaller aspect ratio) were correlated with increased survival. These findings will inform investigations into developmental and genetic architecture of complex mammal coat patterns and their adaptive value.

Highlights

  • Complex color patterns such as spots and stripes are found on many animal species and these phenotypic traits are hypothesized to play adaptive roles in predator and parasite evasion, thermoregulation, and communication (Cott, 1940; Caro, 2005)

  • We see a need for more tools and techniques to reliably quantify individual variation in complex coat pattern traits in wild populations (Eizirik et al, 2010; Willisch, Marreros & Neuhaus, 2013), and studies that use quantitative genetics and demographic methods to investigate heritability and adaptive significance of those traits in wild mammal populations (Kruuk, Slate & Wilson, 2008; Kaelin et al, 2012)

  • We demonstrated that some giraffe coat pattern traits of spot shape appeared to be heritable from mother to calf, and that coat pattern phenotypes defined by spot size and shape differed in fitness as measured by neonatal survival

Read more

Summary

Introduction

Complex color patterns such as spots and stripes are found on many animal species and these phenotypic traits are hypothesized to play adaptive roles in predator and parasite evasion, thermoregulation, and communication (Cott, 1940; Caro, 2005). Measuring individual variation in complex color patterns, especially detailed measurements such as animal biometrics (Kühl & Burghardt, 2013), can provide novel insight into developmental and genetic architecture (Bowen & Dawson, 1977; Klingenberg, 2010; San-Jose & Roulin, 2017), and the adaptive value of the patterns (Hoekstra, 2006; Allen et al, 2011), as well as benefitting studies of behavior (Lorenz, 1937; Whitehead, 1990), population biology (Holmberg, Norman & Arzoumanian, 2009; Lee & Bolger, 2017), and the growing field of phenomics (Houle, Govindaraju & Omholt, 2010). We see a need for more tools and techniques to reliably quantify individual variation in complex coat pattern traits in wild populations (Eizirik et al, 2010; Willisch, Marreros & Neuhaus, 2013), and studies that use quantitative genetics and demographic methods to investigate heritability and adaptive significance of those traits in wild mammal populations (Kruuk, Slate & Wilson, 2008; Kaelin et al, 2012)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call