Abstract

Simulations of visual impairment are used to educate and inform the public. However, evidence regarding their accuracy remains lacking. Here we evaluated the effectiveness of modern digital technologies to simulate the everyday difficulties caused by glaucoma. 23 normally sighted adults performed two everyday tasks that glaucoma patients often report difficulties with: a visual search task in which participants attempted to locate a mobile phone in virtual domestic environments (virtual reality (VR)), and a visual mobility task in which participants navigated a physical, room-scale environment, while impairments were overlaid using augmented reality (AR). On some trials, a gaze-contingent simulated scotoma—generated using perimetric data from a real patient with advanced glaucoma—was presented in either the superior or inferior hemifield. The main outcome measure was task completion time. Eye and head movements were also tracked and used to assess individual differences in looking behaviors. The results showed that the simulated impairments substantially impaired performance in both the VR (visual search) and AR (visual mobility) tasks (both P < 0.001). Furthermore, and in line with previous patient data: impairments were greatest when the simulated Visual Field Loss (VFL) was inferior versus superior (P < 0.001), participants made more eye and head movements in the inferior VFL condition (P < 0.001), and participants rated the inferior VFL condition as more difficult (P < 0.001). Notably, the difference in performance between the inferior and superior conditions was almost as great as the difference between a superior VFL and no impairment at all (VR: 71%; AR: 70%). We conclude that modern digital simulators are able to replicate and objectively quantify some of the key everyday difficulties associated with visual impairments. Advantages, limitations, and possible applications of current technologies are discussed. Instructions are also given for how to freely obtain the software described (OpenVisSim).

Highlights

  • Over 100 million people worldwide live with a chronic visual impairment (VI)

  • Compared to No visual field loss (VFL) (Visual Field Loss), median search times were 74% slower in the Superior VFL condition

  • It has been shown that individuals signed-rank test: z = −3.82, P < 0.001), and 125% slower in the Inferior VFL condition ( + 6.3 secs; z = −3.82, P < 0.001)

Read more

Summary

Introduction

Over 100 million people worldwide live with a chronic visual impairment (VI). Unlike with long- or short-sightedness, the effects of VIs can be complex and highly heterogenous. Only a certain part of the visual-field is affected (e.g., predominantly peripheral vision in glaucoma, or predominantly central vision in AMD), and information in these regions is often not eliminated completely, but rather degraded in a variety of subtle ways: becoming blurry, faded, jumbled, or distorted[2]. Given the prevalence and complexity of VIs, simulations are often used to help communicate the day-to-day challenges that visually impaired individuals may experience. An effective VI simulator has long been sought after as a way of informing health panels assessing the value-formoney of novel sight-loss treatments[4]. An effective simulator would aid in the design and assessment of more accessible products[5] and built environments[6]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.