Abstract
AbstractObject Detection, a fundamental computer vision problem, has paramount importance in smart camera systems. However, a truly reliable camera system could be achieved if and only if the underlying object detection component is robust enough across varying imaging conditions (or domains), for instance, different times of the day, adverse weather conditions, etc. In an effort to achieving a reliable camera system, in this paper, we make an attempt to train such a robust detector. Unfortunately, to build a well-performing detector across varying imaging conditions, one would require labeled training images (often in large numbers) from a plethora of corner cases. As manually obtaining such a large labeled dataset may be infeasible, we suggest using synthetic images, to mimic different training image domains. We propose a novel, contrastive learning method to align the latent representations of a pair of real and synthetic images, to make the detector robust to the different domains. However, we found that merely contrasting the embeddings may lead to catastrophic forgetting of the information essential for object detection. Hence, we employ a continual learning based penalty, to alleviate the issue of forgetting, while contrasting the representations. We showcase that our proposed method outperforms a wide range of alternatives to address the extremely challenging, yet under-studied scenario of object detection at night-time.KeywordsObject detectionFourier transformationContrastive learningContinual learningDomain generalizationImage translation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.