Abstract

We review recent studies by optics methods of emergent phases in the quantum Hall (QH) regimes of double layers with finite tunneling at Landau level filling factor ν=1. In measurements of spin excitations by inelastic light scattering and of elastically scattered Rayleigh light under the application of in-plane magnetic fields, we uncovered evidence of a quantum phase transition that occurs when a many-body tunneling gap collapses. The transformation can be regarded as a transition from an incompressible highly correlated QH state to a compressible composite-fermion bilayer system. The correlated QH state is characterized by the presence of populations of bound electron-hole pairs across the tunneling gap. Quantitative determinations of the density of such excitonic pairs are obtained from inelastic light scattering spectra of spin excitations. The correlated QH state displays resonant Rayleigh scattering with unusual temperature dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.