Abstract

Context: Modern versions of the Miller-Urey experiment claim that formamide (NH$_2$CHO) could be the starting point for the formation of metabolic and genetic macromolecules. Intriguingly, formamide is indeed observed in regions forming Solar-type stars as well as in external galaxies. Aims: How NH$_2$CHO is formed has been a puzzle for decades: our goal is to contribute to the hotly debated question of whether formamide is mostly formed via gas-phase or grain surface chemistry. Methods: We used the NOEMA interferometer to image NH$_2$CHO towards the L1157-B1 blue-shifted shock, a well known interstellar laboratory, to study how the components of dust mantles and cores released into the gas phase triggers the formation of formamide. Results: We report the first spatially resolved image (size $\sim$ 9", $\sim$ 2300 AU) of formamide emission in a shocked region around a Sun-like protostar: the line profiles are blueshifted and have a FWHM $\simeq$ 5 km s$^{-1}$. A column density of $N_{\rm NH_2CHO}$ = 8 $\times$ 10$^{12}$ cm$^{-1}$, and an abundance (with respect to H-nuclei) of 4 $\times$ 10$^{-9}$ are derived. We show a spatial segregation of formamide with respect to other organic species. Our observations, coupled with a chemical modelling analysis, indicate that the formamide observed in L1157-B1 is formed by gas-phase chemical process, and not on grain surfaces as previously suggested. Conclusions: The SOLIS interferometric observations of formamide provide direct evidence that this potentially crucial brick of life is efficiently formed in the gas-phase around Sun-like protostars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call