Abstract

ABSTRACT Possible formation scenarios of supermassive black holes (BHs) in the early universe include rapid growth from less massive seed BHs via super-Eddington accretion or runaway mergers, yet both of these scenarios would require seed BHs to efficiently sink to and be trapped in the Galactic Centre via dynamical friction. This may not be true for their complicated dynamics in clumpy high-z galaxies. In this work, we study this ‘sinking problem’ with state-of-the-art high-resolution cosmological simulations, combined with both direct N-body integration of seed BH trajectories and post-processing of randomly generated test particles with a newly developed dynamical friction estimator. We find that seed BHs less massive than $10^8\, \mathrm{M}_\odot$ (i.e. all but the already-supermassive seeds) cannot efficiently sink in typical high-z galaxies. We also discuss two possible solutions: dramatically increasing the number of seeds such that one seed can end up trapped in the Galactic Centre by chance, or seed BHs being embedded in dense structures (e.g. star clusters) with effective masses above the mass threshold. We discuss the limitations of both solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.