Abstract

Competitive interaction between conifers and angiosperms has moulded the structure of global vegetation since the Cretaceous. Angiosperms appear to enjoy their greatest advantage in the lowland tropics, an advantage often attributed to the presence of vessels in their xylem tissue. By monitoring the seedling growth of three members of the pan-tropical conifer family Podocarpaceae and three tropical angiosperm tree species, our aim was to determine whether these conifer and angiosperm seedlings showed distinct patterns of growth and light adaptation that might be attributed to the presence/absence of vessels. Angiosperm seedlings were consistently more efficient in terms of leaf area carried per unit stem investment, as well as more responsive to light climate than the conifer seedlings. Apparently linked to this were larger growth rate, stem hydraulic conductivity and stomatal conductance in the angiosperm sample. Stem hydraulic conductivity and maximum stomatal conductance were highly correlated among species and light treatments explaining the association between highly conductive vessel-bearing wood and high rates of gas exchange. We conclude that xylem vessels contribute to higher rates of gas exchange and more efficient production of leaf area in our sample angiosperms than in conifers. However, this advantage is limited by shade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.