Abstract

Abstract. The characteristics of microhabitats of established Pinus sylvestris and Betula seedlings were studied in a small windthrow gap in a mature P. sylvestris‐dominated forest in the Petkeljärvi National Park in eastern Finland. Seedlings were strongly clustered in disturbed microhabitats, particularly uprooting pits and mounds, formed by tree falls. They covered 3% of the 0.3.ha study area consisting of the gap and some of the forest edge. Although Betula occurred only as scattered individuals in the dominant canopy layer of the forest, it accounted for 30% of the seedlings found in the study area. Betula regeneration was almost completely restricted to pits and mounds, where 91% of the seedlings were found. Uprooting spots were also the most important regeneration microhabitats for Pinus, where 60% of the seedlings grew, even though the seedlings were found in other substrates as well, particularly on sufficiently decomposed coarse wood. Undisturbed field‐ and bottom‐layer vegetation had effectively hindered tree seedling establishment, which emphasises the role of soil disturbance for regeneration. While the establishment of seedlings was found to be clearly determined by the availability of favourable regeneration microhabitats, the early growth of seedlings was affected by a complex interaction of environmental variables, including the type of microhabitat, radiation environment and interferences caused by competing seedlings and adjacent trees. In the most important regeneration microhabitats, i.e. in uprooting pits and on mounds, the distributions of the local elevations of Pinus and Betula seedlings were different. Pinus seedlings occurred closer to ground level, i.e. on the fringes of pits and lower on mounds, while Betula seedlings grew deeper in pits and higher on mounds. The position of the Betula seedlings indicate that they may have a competitive advantage over Pinus seedlings in the dense seedling groups occurring in uprooting spots. We suggest that this initial difference in Pinus and Betula establishment may affect the subsequent within‐gap tree species succession and can, in part, explain the general occurrence of Betula in conifer‐dominated boreal forests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.