Abstract

Seedling establishment is central to population maintenance for nonclonal plant species. Plants with low recruitment rates are expected to have high survival rates, and life history theory indicates there should be a single curve for the trade-off between recruitment and mortality that applies to most or all plant species. Alpine perennials are thought to have extraordinarily low recruitment rates because of the harsh environment, but the importance of recruitment in the life history of these plants is unknown. Two alpine cushion plant species, Minuartia obtusiloba and Paronychia pulvinata, were used to (1) determine the role of recruitment in population maintenance and (2) determine whether the fecundity/mortality trade-off for these alpine plants falls on or off of the curve for other perennial plant species. Using size-based population projection matrices, we determined that the life history of Minuartia and Paronychia emphasizes recruitment less than that of any other nonclonal species in a literature survey. Estimated maximum life spans of these two species are 200 and 324 yr, respectively, and a regression with other perennial species from the literature indicated that the relationship between fecundity and mortality in these alpine species is consistent with the predicted trade-off curve for perennial species from other environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call