Abstract
Text mining is a semi-automated process of extracting knowledge from a large amount of unstructured data. Given that the amount of unstructured data being generated and stored is increasing rapidly, the need for automated means to process it is also increasing. In this study, we present, discuss and evaluate the techniques used to perform text mining on collections of textual information. A case study is presented using text mining to identify clusters and trends of related research topics from three major journals in the management information systems field. Based on the findings of this case study, it is proposed that this type of analysis could potentially be valuable for researchers in any field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.