Abstract

Summary We propose seeded binary segmentation for large-scale changepoint detection problems. We construct a deterministic set of background intervals, called seeded intervals, in which single changepoint candidates are searched for. The final selection of changepoints based on these candidates can be done in various ways, adapted to the problem at hand. The method is thus easy to adapt to many changepoint problems, ranging from univariate to high dimensional. Compared to recently popular random background intervals, seeded intervals lead to reproducibility and much faster computations. For the univariate Gaussian change in mean set-up, the methodology is shown to be asymptotically minimax optimal when paired with appropriate selection criteria. We demonstrate near-linear runtimes and competitive finite sample estimation performance. Furthermore, we illustrate the versatility of our method in high-dimensional settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.