Abstract

Bioassays were conducted in a greenhouse at 18°C to determine the effectiveness of a seed treatment used in combination with biocontrol agents for the reduction of corn damping-off caused by species of Pythium and Fusarium. Corn seeds were infiltrated with tap water, drained, air-dried, and then coated with biomass of an antagonistic fungus, Gliocladium virens isolate Gl-3, or an antagonistic bacterium, Burkholderia cepacia isolates Bc-B or Bc-1, or a combination of Gl-3 with each of the bacterial isolates. A nonsterile field soil was infested with a combination of pathogens: Pythium ultimum, P. arrhenomanes, and Fusarium graminearum at 2 inoculum rates (1× and 4×). Pre-infiltration enhanced (P ≤ 0.05) disease control with most treatments at both inoculum rates. Treatments with biocontrol agents alone or in combination, as well as the fungicide captan, effectively reduced the disease at a pathogen inoculum rate of 1×, resulting in greater (P ≤ 0.05) seedling stands, plant height, and fresh weight, and lower (P ≤ 0.05) root rot severity compared with untreated seeds in infested soil. At a pathogen inoculum rate of 4×, stands were lower (P ≤ 0.01) and root-rot severity was higher (P ≤ 0.01) compared to those at 1× for all treatments. Nevertheless, coating seeds with all biocontrol agents (alone or in combination), except with Bc-1 alone, reduced disease (P ≤ 0.05) compared to untreated seeds in infested soil. At both inoculum rates of 1× and 4×, coating seeds with Gl-3 + Bc-B was more effective (P ≤ 0.05) in disease control than any other treatment, resulting in stands, growth rate (plant height and fresh weight), and root rot severity similar to plants from untreated seeds in noninfested soil. In addition, when the exudate from a 2-h infiltration of corn seed was added to the seeds during seed coating, seedling stand was often lower and root rot severity was often higher than those from infiltrated seeds (P ≤ 0.05). These results indicated that the infiltration process removed certain exudates, including nutrients and/or stimulants (not detected in this study) that might be utilized by pathogens to initiate seed infection. A thin-layer chromatography (TLC) profile of the exudates showed the presence of eight amino acids and three major carbohydrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.