Abstract

A current focus of biopharmaceutical research and production is seed train process intensification. This allows for intermediate cultivation steps to be avoided or even for the direct inoculation of a production bioreactor with cells from cryovials or cryobags. Based on preliminary investigations regarding the suitability of high cell densities for cryopreservation and the suitability of cells from perfusion cultivations as inoculum for further cultivations, an ultra-high cell density working cell bank (UHCD-WCB) was established for an immunoglobulin G (IgG)-producing Chinese hamster ovary (CHO) cell line. The cells were previously expanded in a wave-mixed bioreactor with internal filter-based perfusion and a 1 L working volume. This procedure allows for cryovial freezing at 260 × 106 cells mL−1 for the first time. The cryovials are suitable for the direct inoculation of N−1 bioreactors in the perfusion mode. These in turn can be used to inoculate subsequent IgG productions in the fed-batch mode (low-seed fed-batch or high-seed fed-batch) or the continuous mode. A comparison with the standard approach shows that cell growth and antibody production are comparable, but time savings of greater than 35% are possible for inoculum production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call