Abstract

Peanuts are a nutrient-dense legume with high lipid, protein, vitamin and mineral content. Peanut development is harmed by drought stress, particularly during the germination and seedling stages. Finding ways to mitigate the impacts of drought stress will have positive effects on peanut production. Seed priming, a short-gun strategy for modulating the impact of abiotic stressors on agricultural plants, has lately piqued the attention of researchers to instill drought tolerance in important crops. In this study, peanut seeds (VD01-2 cultivar) were used as material to investigate the role of priming with sodium nitroprusside at different concentrations (10, 15, 20 and 25 mg L-1) in preventing the damage of peanuts triggered by drought stress. Morphological, physiological and biochemical changes during the development of peanuts in the drought stress condition were analyzed. The results show that moderate drought stress (60% of field capacity) reduced germination and seedling growth. Drought stress reduced relative water content, photosynthesis, and the content of chlorophyll and starch significantly over the control. Seed priming with 20 mg L-1 sodium nitroprusside was effective in increasing these above mentioned growth parameters. Further, the priming of 20 mg L-1 sodium nitroprusside enhanced respiration rate and carotenoid, soluble sugar and proline content compared to the control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call