Abstract

Clustering of the abundant SiO molecules has been discussed as a possible mechanism of seed particle formation for silicate dust in stellar outflows with an oxygen rich element mixture. Previous results indicated that condensation temperatures based on this mechanism are significant lower than what is really observed. This negative result strongly rests on experimental data on vapour pressure of SiO. New determinations show the older data to be seriously in error. Here we aim to check with improved data the possibility that SiO nucleation triggers the cosmic silicate dust formation. First we present results of our measurements of vapour pressure of solid SiO. Second, we use the improved vapour pressure data to re-calibrate existing experimental data on SiO nucleation from the literature. Third, we use the re-calibrated data on SiO nucleation in a simple model for dust-driven winds to determine the condensation temperature of silicate in stellar outflows from AGB stars. We show that onset of nucleation under circumstellar conditions commences at higher temperature than was previously found. Calculated condensation temperatures are still by about 100 K lower than observed ones, but this may be due to the greenhouse effect of silicate dust temperatures. The assumption that the onset of silicate dust formation in late-type M stars is triggered by cluster formation of SiO is compatible with dust condensation temperatures derived from IR observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.