Abstract

AbstractAdditive engineering has emerged as one of the most promising strategies to improve the performance of perovskite solar cells (PSCs). Among additives, perovskite nanocrystals (NCs) have a similar chemical composition and matched lattice structure with the perovskite matrix, which can effectively enhance the efficiency and stability of PSCs. However, relevant studies remain limited, and most of them focus on bromide‐involved perovskite NCs, which may undergo dissolution and ion exchange within the FAPbI3 host, potentially resulting in an enlarged band gap. In this work, we employ butylamine‐capped CsPbI3 NCs (BPNCs) as additives in PSCs, which can be well maintained and serve as seeds for regulating the crystallization and growth of perovskite films. The resultant perovskite film exhibits larger domain sizes and fewer grain boundaries without compromising the band gap. Moreover, BPNCs can alleviate lattice strain and reduce defect densities within the active layer. The PSCs incorporating BPNCs show a champion power conversion efficiency (PCE) of up to 25.41 %, well over both Control of 22.09 % and oleic acid/oleylamine capped CsPbI3 NC (PNC)‐based devices of 23.11 %. This work illustrates the key role of nanosized seed surfaces in achieving high‐performance photovoltaic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call