Abstract

The origin of the magnetic field in galaxies is an open question in astrophysics. Several mechanisms have been proposed related, in general, with the generation of small seed fields amplified by a dynamo mechanism. In general, these mechanisms have difficulty in satisfying both the requirements of a sufficiently high strength for the magnetic field and the necessary large coherent scales. We show that the formation of dense and turbulent shells of matter, in the multiple explosion scenario of Miranda and Opher (1996, 1997) for the formation of the large-scale structures of the Universe, can naturally act as a seed for the generation of a magnetic field. During the collapse and explosion of Population III objects, a temperature gradient not parallel to a density gradient can naturally be established, producing a seed magnetic field through the Biermann battery mechanism. We show that seed magnetic fields $\sim 10^{-12}-10^{-14}G$ can be produced in this multiple explosion scenario on scales of the order of clusters of galaxies (with coherence length $L\sim 1.8Mpc$) and up to $\sim 4.5\times 10^{-10}G$ on scales of galaxies ($L\sim 100 kpc$).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.