Abstract

Insect herbivory decreases plant fitness by constraining plant growth, survival and reproductive output. Most studies on the effects of herbivory in trees rely on correlational inter-individual comparisons and could, thus, be affected by confounding factors linked to both herbivory and plant performance. Using the Mediterranean Holm oak (Quercus ilex) as a study model, we followed an experimental approach in which leaf-feeding insects (mainly Lepidoptera caterpillars) were excluded from some shoots in all study trees. Shoots subjected to herbivore exclusion exhibited lower defoliation rates and produced more acorns than control shoots. Defoliation constrained shoot growth throughout the study period, but had no effect on the number of female flowers produced per shoot. Acorn production was, however, lower in control shoots due to their higher abortion rates, and also to their greater mortality risk during summer drought, as shoots with fewer leaves were less likely to survive. Plant reaction to herbivory inhibits certain physiological pathways involved in plant growth, which, together with the effects of physical damage, reduces the amount and efficiency of the photosynthetic tissue. This increases their vulnerability to environmental stresses, such as water deficit, which limit resource assimilation. Defoliation is likely a key factor affecting oak regeneration, as it may be a significant source of seed loss prior to pre-dispersal acorn predation. Further experimental studies could help to elucidate its effects in contrasting environments. In Mediterranean regions, the harsher droughts predicted by climate change models could worsen the effects of insect herbivory on oak reproductive output.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call