Abstract

It was recently discovered that the chemical vapor deposition (CVD) of CH4 on Ge(001) can directly yield long, narrow, semiconducting nanoribbons of graphene with smooth armchair edges. These nanoribbons have exceptional charge transport properties compared with nanoribbons grown by other methods. However, the nanoribbons nucleate at random locations and at random times, problematically giving rise to width and bandgap polydispersity, and the mechanisms that drive the anisotropic crystal growth that produces the nanoribbons are not understood. Here, we study and engineer the seed-initiated growth of graphene nanoribbons on Ge(001). The use of seeds decouples nucleation and growth, controls where growth occurs, and allows graphene to grow with lattice orientations that do not spontaneously form without seeds. We discover that when the armchair direction (i.e., parallel to C-C bonds) of the seeds is aligned with the Ge⟨110⟩ family of directions, the growth anisotropy is maximized, resulting in the formation of nanoribbons with high-aspect ratios. In contrast, increasing misorientation from Ge⟨110⟩ yields decreasingly anisotropic crystals. Measured growth rate data are used to generate a construction analogous to a kinetic Wulff plot that quantitatively predicts the shape of graphene crystals on Ge(001). This knowledge is employed to fabricate regularly spaced, unidirectional arrays of nanoribbons and to significantly improve their uniformity. These results show that seed-initiated graphene synthesis on Ge(001) will be a viable route for creating wafer-scale arrays of narrow, semiconducting, armchair nanoribbons with rationally controlled placement and alignment for a wide range of semiconductor electronics technologies, provided that dense arrays of sub-10 nm seeds can be uniformly fabricated in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.