Abstract

AbstractSeed germination is a crucial event in a plant's life cycle. Because temperature and water availability are important regulators of seed germination, this process will likely be influenced by global warming. Insight into the germination process under global warming is thus crucial, and requires the study of a wide range of water availability and temperature conditions. As hydrothermal time (HTT) models evaluate seed germination for any combination of water potential and temperature, they can be suitable to predict global warming effects on seed germination. We studied the germination characteristics of the high Andean endemic tree speciesPolylepis besseri(Rosaceae), using HTT models. We were especially interested in the potential effects of global warming on seed germination. Assembly of HTT models forP. besseriwas fairly straightforward due to the lack of a seed dormancy mechanism. The models allowed prediction ofPolylepisgermination under constant and alternating temperatures. Initially, a global warming induced increase in the field minimum and mean temperature will increaseP. besserigermination, but as maximum temperatures rise above the optimum temperature for the species, seed germination will become jeopardized. Effects of global warming on seed germination are currently considerably underexplored. HTT models prove to be useful tools to study a plant species' general germination characteristics, and how they may become affected under global warming. For the endemic mountain tree speciesP. besseri, we predict an increase, followed by a decrease of seed germination under global warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call