Abstract

AbstractWe studied the variability of germination, dormancy and viability loss of Hirschfeldia incana seeds in relation to seed size. Seeds were stored at 35°C under humid [75% relative humidity (RH)] or dry (33% RH) conditions. Seed germination and electrolyte leakage were evaluated periodically. Small seeds had lower longevity at humid or dry storage conditions (5 or 407 days, respectively) than large or intermediate seeds (7–9 or 536–727 days, respectively). Moreover, H. incana shows variability in seed dormancy related to seed size within a population, with small seeds having lower dormancy (13%) than intermediate (50%) or large seeds (72%). Dormancy was partially released after a short storage at 35°C and humid conditions. Under dry storage conditions, endogenous dormancy cycles were observed for over a year, and longer times of storage had a dormancy-breaking effect through dry after-ripening. Results suggest a dual strategy producing non-dormant seeds with low longevity that will germinate immediately after dispersal, and seeds with greater longevity that will delay germination. Membrane permeability increased linearly with ageing at both humid and dry storage (R2 = 0.60). Small seeds showed greater conductivity than intermediate or large seeds (0.7, 0.4 or 0.3 mS g–1 dry weight, respectively, at the 80% germination). The conductivity test could be used to evaluate the quality of H. incana seeds and would allow us to identify dormant (non-germinating) seed lots as viable. However, the influence of storage conditions and variability within a seed population on seed longevity should be taken into account when evaluating seed quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.