Abstract

An important feature of seed dispersal mutualism is the differentiation of dispersal-related seed traits (dispersal syndrome), which potentially contribute to partitioning of both seed dispersers and regeneration sites among sympatric plants. Yet, the selective factors underlying the diversity in dispersal syndromes are largely unknown. The differential requirements for seed dispersal distances are often proposed as a main factor in plant adaptations to disperser animals. Focusing on two sympatric ant-dispersed sedges Carex lanceolata and Carex tristachya (Cyperaceae), we tested the association of the adaptation to different dispersers with requirements for seed dispersal distances. We found that C. lanceolata was more frequently dispersed by the large ant Formica japonica (which had relatively long dispersal distances compared with other smaller ants) than by C. tristachya, and this was caused by the higher seed attractiveness of C. lanceolata to F. japonica. Pot experiments manipulating adult-to-seedling distances showed that isolation from conspecific adults only benefited C. lanceolata seedlings, and C. tristachya seedlings were not affected. These results support the importance of differential requirements for seed dispersal distances as a factor underlying the diversity in dispersal syndromes among animal-dispersed plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.