Abstract

Quinoa (Chenopodium quinoa Willd.) is a pseudocereal celebrated for its excellent nutritional quality and potential to improve global food security, especially in marginal environments. However, minimal information is available on how genotype influences seed composition, and thus, nutritional quality. This study aimed to provide a baseline for nutritional quality of Washington grown quinoa and test the hypothesis that these samples contain adequate amounts of essential amino acids to meet daily requirements set by the World Health Organization (WHO). One hundred samples, representing commercial varieties and advanced breeding lines adapted to Washington State, were analyzed for content of 23 amino acids, as well as crude protein, ash, moisture, and crude fat. Mean essential amino acid values for Washington grown quinoa met the daily requirements for all age groups for all essential amino acids, except for the amount of leucine required by infants. We found that only nine genotypes met the leucine requirements for all age groups. A total of 52 and 94 samples met the lysine and tryptophan requirements for all age groups, respectively. Mean values for isoleucine, leucine, lysine, tryptophan, valine, and the sulfur and aromatic amino acids are higher for Washington grown samples than those reported previously reported in the literature. Our results show that not all Washington grown quinoa samples meet daily requirements of essential amino acids, and we identify limiting amino acids for the germplasm and environments investigated. This study provides the first report of leucine as a limiting amino acid in quinoa. Additional research is needed to better understand variation in quinoa nutritional composition, identify varieties that meet daily requirements, and explore how genotype, environment, and management interactions influence nutritional quality.

Highlights

  • Andean farmers have domesticated, adapted, diversified, and conserved quinoa genetic resources for the last 7,000 years, and until recently quinoa has been regarded as a neglected and underutilized species (NUS) [1, 2]

  • Quinoa grown in Chimacum (n = 24; advanced breeding lines and control varieties; Table 3) had the highest mean total amino acid, crude protein and moisture content, and the lowest mean

  • Our study provides data on essential amino acid profiles for 100 distinct samples, representing 92 unique commercial varieties, landraces, and advanced breeding lines adapted to cultivation in Washington State, and evaluates the nutritional protein quality of each sample compared to the requirements of all age groups [52]

Read more

Summary

Introduction

Andean farmers have domesticated, adapted, diversified, and conserved quinoa genetic resources for the last 7,000 years, and until recently quinoa has been regarded as a neglected and underutilized species (NUS) [1, 2]. The broad genetic variability and adaptability of quinoa to diverse climates has produced a gene pool that supports the strategic development of germplasm with varying morphological [12] and physiological [13, 14] characteristics, and end-uses [15,16,17,18] suitable for adoption in novel agroecological climates worldwide. The germplasm pool currently available to facilitate quinoa expansion and adoption in novel production regions is narrow and represents only a small portion of quinoa’s genetic diversity. The germplasm pool is primarily constrained by physiological issues (e.g., grain filling) associated with day length sensitivity [19]

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call