Abstract

The appearance of the seed is an important aspect of consumer preference for cowpea (Vigna unguiculata [L.] Walp.). Seed coat pattern in cowpea has been a subject of study for over a century. This study makes use of newly available resources, including mapping populations, a reference genome and additional genome assemblies, and a high-density single nucleotide polymorphism genotyping platform, to map various seed coat pattern traits to three loci, concurrent with the Color Factor (C), Watson (W), and Holstein (H) factors identified previously. Several gene models encoding proteins involved in regulating the later stages of the flavonoid biosynthesis pathway have been identified as candidate genes, including a basic helix–loop–helix gene (Vigun07g110700) for the C locus, a WD-repeat gene (Vigun09g139900) for the W locus and an E3 ubiquitin ligase gene (Vigun10g163900) for the H locus. A model of seed coat development, consisting of six distinct stages, is described to explain some of the observed pattern phenotypes.

Highlights

  • Cowpea (Vigna unguiculata [L.] Walp.) is a diploid (2n = 22) warm season legume which is primarily grown and serves as a major source of protein and calories in sub-Saharan Africa

  • One biparental population consisted of 87 recombinant inbred line (RIL) developed at the University of California, Riverside (UCR), derived from a cross between California Blackeye 27 (CB27), which has a black Eye 2 pattern, and IT82E-18, known as “Big Buff ” (BB), which has a brown Full Coat pattern (Muchero et al, 2009)

  • The second biparental RIL population consisted of 80 RILs developed at UCR derived from a cross between CB27 and IT97K-556-6 (556), which has a brown Full Coat pattern (Huynh et al, 2015)

Read more

Summary

Introduction

Cowpea (Vigna unguiculata [L.] Walp.) is a diploid (2n = 22) warm season legume which is primarily grown and serves as a major source of protein and calories in sub-Saharan Africa. Most of the production in sub-Saharan Africa is by smallholder farmers in marginal conditions, often as an intercrop with maize, sorghum, or millet (Ehlers and Hall, 1997). Due to its high adaptability to both heat and drought and its association with nitrogen fixing bacteria, cowpea is a versatile crop (Ehlers and Hall, 1997; Boukar et al, 2018). The seeds are used whole or ground into flour (Singh, 2014; Tijjani et al, 2015). Seed coat pattern is an important consumer-related

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call