Abstract

Motivation: Prochlorococcus possesses the smallest genome of all sequenced photoautotrophs. Although the number of regulatory proteins in the genome is very small, the relative number of small regulatory RNAs is comparable with that of other bacteria. The compact genome size of Prochlorococcus offers an ideal system to search for targets of small RNAs (sRNAs) and to refine existing target prediction algorithms.Results: Target predictions for the cyanobacterial sRNA Yfr1 were carried out with INTARNA in Prochlorococcus MED4. The ultraconserved Yfr1 sequence motif was defined as the putative interaction seed. To study the impact of Yfr1 on its predicted mRNA targets, a reporter system based on green fluorescent protein (GFP) was applied. We show that Yfr1 inhibits the translation of two predicted targets. We used mutation analysis to confirm that Yfr1 directly regulates its targets by an antisense interaction sequestering the ribosome binding site, and to assess the importance of interaction site accessibility.Contact: backofen@informatik.uni-freiburg.de; claudia.steglich@biologie.uni-freiburg.deSupplementary information: Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.