Abstract

Seed formation is part of the reproductive cycle, leading to the accumulation of resistance stages that can withstand harsh environmental conditions for long periods of time. At the community level, multiple species with such long-lasting life stages can be more likely to coexist. While the implications of this process for biodiversity have been studied in terrestrial plants, seed banks are usually neglected in phytoplankton multispecies dynamic models, in spite of widespread empirical evidence for such seed banks. In this study, we build a metacommunity model of interacting phytoplankton species, including a resting stage supplying the seed bank. The model is parameterized with empirically-driven growth rate functions and field-based interaction estimates, which include both facilitative and competitive interactions. Exchanges between compartments (coastal pelagic cells, coastal resting cells on the seabed, and open ocean pelagic cells) are controlled by hydrodynamical parameters to which the sensitivity of the model is assessed. We consider two models, i.e., with and without a saturating effect of the interactions on the growth rates. Our results are consistent between models, and show that a seed bank allows to maintain all species in the community over 30 years. Indeed, a fraction of the species are vulnerable to extinction at specific times within the year, but this process is buffered by their survival in their resting stage. We thus highlight the potential role of the seed bank in the recurrent re-invasion of the coastal community, and of coastal environments in re-seeding oceanic regions. Moreover, the seed bank enables populations to tolerate stronger interactions within the community as well as more severe changes to the environment, such as those predicted in a climate change context. Our study therefore shows how resting stages may help phytoplanktonic diversity maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.