Abstract

In recent years the use of non-intrusive and non-invasive imaging techniques to safely interrogate non-nuclear (industrial) storage vessels or process units has seen a significant increase. The nature of material found within active ‘legacy waste’ storage vessels and other radiation shielded vessels coupled with the distinct lack of access makes representative sampling or visual inspection of the vessel extremely problematic and in some cases impossible. However, until recently, the radiation shielding which is commonplace on all nuclear sites has rendered existing remote non-intrusive imaging techniques useless. This is due to the limiting penetrative power of X-rays and gamma-rays as well as lack of access for other semi-invasive techniques such as electrical and acoustic imaging. Cosmic ray muon based imaging systems have great potential. This is because muons have very high energies (up to 10 12 GeV) and therefore, offer a superior penetrative power which provides a means to ‘peer through’ objects which otherwise would be inaccessible. Such objects may include lead lined silo or vessels as well as various intermediate material transport modules. Because muons only show detectable interactions with high atomic number material they also offer a means to detect the quantity and location of heavy metal elements and their associated compounds. In this work the first attempts at two-dimensional muon attenuation mapping are described. More specifically multiple plane prototype muon detection system has been used to image the resultant attenuation maps for a number of lead phantoms. This opens up possibilities for the collation of muon trajectory data which in turn can be used to track muon events both entering and leaving the object of interest allowing attenuation based image processing. It is believed that future work in this area will serve to significantly improve both the coverage area and the spatial resolution of the system though improved detector technology providing a powerful tool for the rendering of either large or dense objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.