Abstract
The existing approaches based on different neural networks automatically capture and fuse the multimodal semantics of news, which have achieved great success for fake news detection. However, they still suffer from the limitations of both shallow fusion of multimodal features and less attention to the inconsistency between different modalities. To overcome them, we propose multi-reading habits fusion reasoning networks (MRHFR) for multi-modal fake news detection. In MRHFR, inspired by people's different reading habits for multimodal news, we summarize three basic cognitive reading habits and put forward cognition-aware fusion layer to learn the dependencies between multimodal features of news, so as to deepen their semantic-level integration. To explore the inconsistency of different modalities of news, we develop coherence constraint reasoning layer from two perspectives, which first measures the semantic consistency between the comments and different modal features of the news, and then probes the semantic deviation caused by unimodal features to the multimodal news content through constraint strategy. Experiments on two public datasets not only demonstrate that MRHFR not only achieves the excellent performance but also provides a new paradigm for capturing inconsistencies between multi-modal news.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.